

Engineering Mathematics (1) AFinal Exam.1/1/2018Time allowed3 hour

First year (production Branch)

Total Mark (105) 21 for each question

Answer the following questions:

Question (1)

- (a) Use the power series to solve the differential equation y'' 2xy' + y = 0.
- (b) Given w = f(x, y), $x = r \cos \theta$, $y = r \sin \theta$

Show that $(w_x)^2 + (w_y)^2 = (w_r)^2 + \frac{1}{r^2}(w_\theta)^2$

(c) Find the local extrema of the function $f(x, y) = x^2 + 4y^2 - x + 2y$

Question (2)

- (a) If $\phi = 2x^3y^2z^4$ find $\vec{\nabla}.\vec{\nabla}\phi$ and $\vec{\nabla}\times\vec{\nabla}\phi$
- (b) Evaluate $\int_{C} \vec{F} d\vec{r}$ where $\vec{F} = (5xy 6x^2)\vec{i} + (2y 4x)\vec{j}$ along the curve $y = x^3$ from the point (1,1) to the point (2,8). (c) Evaluate $\int_{0}^{2} \int_{0}^{2x} (x^3 + 4y) dy dx$

Question (3)

Find the general solution of the following differential equations:

(a)
$$xydx + (x^2 + 1)dy = 0$$

(b) (3x+y)dx + (x+3y)dy = 0

(c)
$$y' + y \tan x = \sin x$$

Question (4)

- (a) Find the general solution for $y'' 5y' 6y = e^x \sinh 6x$ (b) By variation of parameter solve $y'' + n^2 = \csc nx$.
- (c) Find the general solution for
 - $y = e^{-x}$ is one solution.
- xy'' + (x 1)y' y = 0 given that

إنتبه : السوال الخامس في ظهر الورقة

Question (5)

- (a) Evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (2x 3y)\vec{i} + y\vec{j}$ and *C* is the circle $x^2 + y^2 = 4$.
- (b) Apply Green's theorem to evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x y)\vec{i} + (x + y)\vec{j}$ and *C* is the closed curve in xy – plane consisting of $y = x^2, x = y^2$.
- (c) Use the divergence theorem to evaluate $\begin{tabular}{l} & \end{tabular} \vec{F} \cdot \vec{n} \, ds \\ S \end{tabular}$

where $\vec{F} = 2xy \,\vec{i} + y \,z^2 \,\vec{j} + xz \,\vec{k}$ and S is the surface of parallelogram bounded by x = 0, y = 0, z = 0, x = 2, y = 1, z = 3.

Dr. Fathi Abdessalam